IS 441 Spring 2018 Review Class

I. Basic Concepts and skills

1. SELECT:
a. cannot mix row values (fields) with set values (aggregate functions)
b. designate the table, if a field can be in two tables
c. can use alias with AS; but this alias cannot be used later in calculation or comparison
d. can contain a subquery (usually is used to bypass the limitation of point a above)
2. FROM:
a. Single table – too simple to discuss
b. Multiple tables, separated with comma, which (the tables) must later be joined using join conditions in WHERE
c. Multiple tables, in the syntax “A JOIN B ON join condition” – watch out: that needs parentheses when there are 3+ tables
d. Multiple tables, when one table will list all its rows no matter whether the row has a related row in another table – that is OUTER JOIN. Do NOT “abuse” outer join if there’s no logical needs as stated in sentence one in this bullet
e. Can contain a subquery which produces data (multiple rows) that can be used just as any table
f. Join condition:
i. WHEERE
ii. ON
iii. i does not need parentheses, and ii MUST use parentheses if three or more tables are to be joined
iv. cannot perform outer join to join three tables: outer join is for two tables only
v. outer join can only use ON, not WHERE
3. WHERE:
a. Specifies conditions for rows
b. Cannot mix with aggregate functions, because?
c. The most “popular” place to use a subquery (when a row value is to be compared with a set value, the latter will be in a subquery)
d. Multiple conditions MUST be connected with AND or OR, with a field be present in every part of WHERE separated by AND or OR
4. GROUP BY:
a. GROUP BY fields that truly have group characteristics, such as Gender, Major; City, TypeOfService; Project, TypeOfEmployee; Category, etc
b. NEVER try to group by fields that have unique values, such as DOB, Sales, Orderdate (unless this is a large data set where there’re many orders on a date that you do want to find out some common features of orders made on that date)
c. *** With GROUP BY, we find features of GROUPS, such as AVG, SUM, COUNT, etc - **no values for individual rows
5. HAVING:
a. Specifies conditions for *GROUPS* - so:
b. MUST always be after GROUP BY (can never appear before group by); and
c. Used with aggregate functions (since it’s about GROUPS!) – this is in contrast with “b” in WHERE
d. Repeat points “c” and “d” for WHERE
6. ORDER BY:
a. Do NOT confuse this with GROUP BY!
b. The *LAST* clause of the SELECT-statement
c. Can have multiple fields in ORDER BY, in which … (how the multi-fields work in ORDER BY?)
d. Can have ASC or DESC
e. In the case of multiple fields, each can have its different order:
ORDER BY Sales DESC, OrderDate ASC
7. Don’t forget about INSERT, UPDATE

II. Scenarios of subqueries (using Restaurants as examples):
1. Those with sales higher than the average sales of ALL
a. Field > (Subquery involving aggregate function)
2. By city: those cities whose average higher than the average sales of ALL
a. GROUPing, HAVING group-avg > (Subquery involving aggregate function)
3. Those restaurants with sales higher than the average sales of *ITS OWN CITY*
a. Passing parameter: forcing the inner query/subquery to run AVG on THE City that was passed from the outer query/main query
SELECT restaurantID, AnnualSales, City,This part not necessary unless asked

(SELECT AVG(AnnualSales) FROM Restaurants
GROUP BY City
HAVING City = Rest_Outside.City) AS CityAVG
FROM Restaurants Rest_Outside
WHERE AnnualSales>
[bookmark: _GoBack](SELECT AVG(AnnualSales) FROM Restaurants
GROUP BY City
HAVING City = Rest_Outside.City);
4. (Using Employee DB) Those employees who were hired before their managers
a. Self-join: employee’s manager ID = manager’s employee ID
b. Logical condition: Employee’s dateHired < Manager’s dateHired
	SELECT E.Emp_LName AS Employee, E.Emp_hiredate AS E_Date,
M.Emp_LName AS Manager, M.Emp_hiredate AS Mgr_Date
FROM employee M, Employee E
WHERE E.Mgr_Num = M.Emp_Num
AND E.Emp_hiredate < M.Emp_hiredate;
5. All the same as the above, EXCEPT:
AND E.Emp_Pct > M.Emp_Pct;
	[image:]

6. (Using Employee DB) Those employees who have higher bonus percentage than their managers
a. Same operation as the above “4”

III. “OLD” contents:

1. ERD:
a.
2. Functional dependency:
a. FD exists __ALWAYS_____________________
b. PD only exists when __________________________________
c. TD is a _____Non-Key________ fields determining ___other non-key fields__________
d. What can we say about one field’s possible roles/positions in PD/TD? “Exclusive”
e.
3. Normalization:
a. Before normalization, there were N functional dependencies; after normalization, there should be ___ relations (tables)
b. Before normalization, there were M fields (with their respected names) in one big relation (table); after normalization, there should be a total of __ distinct fields in the decomposed, smaller relations (tables)
c. Before normalization, several fields can be found logically connected in a functional dependency; after normalization, those fields should be ________________
d. Before normalization, two functional dependencies could be connected; after normalization, the relations (tables) resulted from those two functional dependencies should _____________________
e. In the original functional dependency diagram, a field or a functional dependency must have a functional dependency arrow with other field(s) or other functional dependencies – otherwise that field (or functional dependency) is _______________

1

image1.png
Employe -| EDate - |Manager -| Mgr Date -

Zhang 2/4/2002 Johnson 2/1/2003
Alonzo 10/10/2001 Johnson 2/1/2003
Washingtor 8/22/1999 Johnson 2/1/2003

smith 7/18/1999Johnson 2/1/2003

1

IS 441 Spring 2018 Review Class

I. Basic Concepts and skills

1.

SELECT:

a.

cannot mix row values (fields) with set values (aggregate functions)

b.

designate the table, if a field can be in two tables

c.

can use alias with AS; but this alias cannot be used later in

calculation or comparison

d.

can contain a subquery (usually is used to bypass the limitation of point a above)

2.

FROM:

a.

Single table

–

too simple to discuss

b.

Multiple tables, separated with comma, which (the tables) must later be joined using

join conditions in

WHERE

c.

Multiple tables, in the syntax “A JOIN B ON join condition”

–

watch out: that needs

parentheses when there are 3+ tables

d.

Multiple tables, when one table will list all its rows no matter whether the row has a

related row in another table

–

that is OUT

ER JOIN. Do NOT “abuse” outer join if there’s

no logical needs as stated in sentence one in this bullet

e.

Can contain a subquery which produces data (multiple rows) that can be used just as

any table

f.

Join condition:

i.

WHEERE

ii.

ON

iii.

i does not need parentheses, an

d ii MUST use parentheses if three or more

tables are to be joined

iv.

cannot perform outer join to join three tables: outer join is for two tables only

v.

outer join can only use ON, not WHERE

3.

WHERE:

a.

Specifies conditions for rows

b.

Cannot mix with aggregate functi

ons, because?

c.

The most “popular” place to use a subquery (when a row value is to be compared with a

set value, the latter will be in a subquery)

d.

Multiple conditions MUST be connected with AND or OR, with a field be present in every

part of WHERE separated

by AND or OR

4.

GROUP BY:

a.

GROUP BY fields that truly have group characteristics, such as Gender, Major; City,

TypeOfService; Project, TypeOfEmployee; Category, etc

b.

NEVER try to group by fields that have unique values, such as DOB, Sales, Orderdate

(unless thi

s is a large data set where there’re many orders on a date that you do want to

find out some common features of orders made on that date)

c.

*** With GROUP BY, we find features of GROUPS, such as AVG, SUM, COUNT, etc

-

**no

values for individual rows

5.

HAVING:

a.

Specifies conditions for *GROUPS*

-

so:

1

IS 441 Spring 2018 Review Class

I. Basic Concepts and skills

1. SELECT:

a. cannot mix row values (fields) with set values (aggregate functions)

b. designate the table, if a field can be in two tables

c. can use alias with AS; but this alias cannot be used later in calculation or comparison

d. can contain a subquery (usually is used to bypass the limitation of point a above)

2. FROM:

a. Single table – too simple to discuss

b. Multiple tables, separated with comma, which (the tables) must later be joined using

join conditions in WHERE

c. Multiple tables, in the syntax “A JOIN B ON join condition” – watch out: that needs

parentheses when there are 3+ tables

d. Multiple tables, when one table will list all its rows no matter whether the row has a

related row in another table – that is OUTER JOIN. Do NOT “abuse” outer join if there’s

no logical needs as stated in sentence one in this bullet

e. Can contain a subquery which produces data (multiple rows) that can be used just as

any table

f. Join condition:

i. WHEERE

ii. ON

iii. i does not need parentheses, and ii MUST use parentheses if three or more

tables are to be joined

iv. cannot perform outer join to join three tables: outer join is for two tables only

v. outer join can only use ON, not WHERE

3. WHERE:

a. Specifies conditions for rows

b. Cannot mix with aggregate functions, because?

c. The most “popular” place to use a subquery (when a row value is to be compared with a

set value, the latter will be in a subquery)

d. Multiple conditions MUST be connected with AND or OR, with a field be present in every

part of WHERE separated by AND or OR

4. GROUP BY:

a. GROUP BY fields that truly have group characteristics, such as Gender, Major; City,

TypeOfService; Project, TypeOfEmployee; Category, etc

b. NEVER try to group by fields that have unique values, such as DOB, Sales, Orderdate

(unless this is a large data set where there’re many orders on a date that you do want to

find out some common features of orders made on that date)

c. *** With GROUP BY, we find features of GROUPS, such as AVG, SUM, COUNT, etc - **no

values for individual rows

5. HAVING:

a. Specifies conditions for *GROUPS* - so:

